
SmartAnthill Documentation
Release 0.0.0

Ivan Kravets

December 14, 2015

Contents

1 Getting Started 3
1.1 Installation . 3
1.2 Launching . 4
1.3 Configuration . 4

2 Usage Documentation 7

3 Developer Documentation 9

4 Specification 11
4.1 Network . 11
4.2 System . 22
4.3 Embedded System . 23

i

ii

SmartAnthill Documentation, Release 0.0.0

Release 0.0.0

Date December 14, 2015

Author Ivan Kravets

Home http://smartanthill.ikravets.com

Warning: The further work on the SmartAnthill Project has been moved to SmartAnthill 2.0.

SmartAnthill opens the door for people that are not familiar with electronics and micro-controller programming, but
earlier had dream to use it. The main goal of SmartAnthill is to destroy the wall between usual user and hardware
world. Thanks to this system we can combine the independent micro-devices or micro-based networks into general
SmartAnthill Network.

You do not need to learn micro-programming languages, you do not need to install any IDE or Toolchain. All you need
is to connect micro-device to SmartAnthill, to select capabilities that device should have and “train it” 1 to behave as
the network device.

1 The “train it” is that SmartAnthill creates unique Embedded System (firmware) for each supported micro-device and then installs it.

Contents 1

http://www.ikravets.com/about-me
http://smartanthill.ikravets.com
https://github.com/smartanthill
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Toolchain

SmartAnthill Documentation, Release 0.0.0

2 Contents

CHAPTER 1

Getting Started

1.1 Installation

1.1.1 Python & OS Support

SmartAnthill is written in Python and works with versions 2.6 and 2.7. SmartAnthill works on Unix/Linux, OS X, and
Windows.

All commands below should be executed in Command-line application in your OS:

• Unix/Linux/OS X this is Terminal application.

• Windows this is Command Prompt (cmd.exe) application.

1.1.2 Super-Quick

To install or upgrade SmartAnthill, download get-smartanthill.py script.

Then run the following (which may require administrator access):

$ python get-smartanthill.py

An alternative short version for Mac/Linux users:

$ curl -L http://bit.ly/1qyr6K1 | python

On Windows OS it may look like:

C:\Python27\python.exe get-smartanthill.py

1.1.3 Full Guide

1. Check python version:

$ python --version

Note: Windows OS Users only:

1. Download Python and install it.

2. Download and install Python for Windows extensions.

3

https://www.python.org
http://en.wikipedia.org/wiki/Command-line_interface
http://en.wikipedia.org/wiki/Command_Prompt
https://raw.githubusercontent.com/ivankravets/smartanthill/develop/get-smartanthill.py
https://www.python.org/downloads/
http://sourceforge.net/projects/pywin32/files/pywin32/Build%20218/

SmartAnthill Documentation, Release 0.0.0

3. Install Python Package Index utility using these instructions.

4. Add to PATH system variable ;C:\Python27;C:\Python27\Scripts; and reopen Command Prompt
(cmd.exe) application. Please read this article How to set the path and environment variables in Windows.

2. To install the latest release via PIP:

$ pip install smartanthill && pip install --egg scons

Note: If your computer does not recognize pip command, try to install it first using these instructions.

For upgrading the SmartAnthill to new version please use this command:

$ pip install -U smartanthill

1.2 Launching

SmartAnthill is based on Twisted and can be launched as Foreground Process as well as Background Process.

1.2.1 Foreground Process

The whole list of usage options for SmartAnthill is accessible via:

$ smartanthill --help

Quick launching (the current directory will be used as Workspace Directory):

$ smartanthill

Launching with specific Workspace Directory:

$ smartanthill --workspacedir=/path/to/workspace/directory

Check the Configuration page for detailed configuration options.

1.2.2 Background Process

The launching in the Background Process implements through twistd utility. The whole list of usage options for
twistd is accessible via twistd --help command. The final SmartAnthill command looks like:

$ cd /path/to/workspace/directory
$ twistd smartanthill

1.3 Configuration

SmartAnthill uses JSON human-readable format for data serialization. This syntax is easy for using and reading.

The SmartAnthill Configuration Parser gathers data in the next order (steps):

1. Loads predefined Base Configuration options.

2. Loads options from Workspace Directory.

4 Chapter 1. Getting Started

https://pip.pypa.io/en/latest/installing.html
http://www.computerhope.com/issues/ch000549.htm
https://pip.pypa.io/en/latest/index.html
https://pip.pypa.io/en/latest/installing.html
http://en.wikipedia.org/wiki/Twisted_(software)
http://en.wikipedia.org/wiki/Background_process
http://en.wikipedia.org/wiki/JSON

SmartAnthill Documentation, Release 0.0.0

3. Loads Console Options.

Note: The Configuration Parser redefines options step by step (from #1 to #3). The Console Options step has the
highest priority.

1.3.1 Base Configuration

The Base Configuration is predefined in SmartAnthill System. See config_base.json.

1.3.2 Workspace Directory

SmartAnthill uses --workspacedir for:

• finding user’s specific start-up configuration options. They must be located in the smartanthill.json file.
(Check the list of the available options here)

• finding the Addons for SmartAnthill System

• storing the settings about micro-devices

• storing the another working data.

For a start please create empty directory (like “project directory”). Later SmartAnthill will fill this folder with proper
data.

Warning: The Workspace Directory must have Written Permission

1.3.3 Console Options

The simple options that are defined in Base Configuration can be redefined through console options for SmartAnthill
Application.

The whole list of usage options for SmartAnthill are accessible via:

$ smartanthill --help

1.3. Configuration 5

https://github.com/smartanthill/smartanthill1_0/blob/develop/smartanthill/config_base.json
https://github.com/ivankravets/smartanthill/blob/develop/smartanthill/config_base.json
http://en.wikipedia.org/wiki/File_system_permissions

SmartAnthill Documentation, Release 0.0.0

6 Chapter 1. Getting Started

CHAPTER 2

Usage Documentation

7

SmartAnthill Documentation, Release 0.0.0

8 Chapter 2. Usage Documentation

CHAPTER 3

Developer Documentation

9

SmartAnthill Documentation, Release 0.0.0

10 Chapter 3. Developer Documentation

CHAPTER 4

Specification

4.1 Network

SmartAnthill Network is an independent micro-based and multi-master network that allows devices to communicate
with each other. The micro-based device can be connected directly to Network through the different routers (for
example, Serial Communication over Serial Port).

The key feature of the Network is communication with other networks. It can be extended with another Network or
with Fieldbuses, like CAN.

4.1.1 Network Model

Comparasion with OSI Model

Layers OSI-Model SmartAnthill Model Protocol Data Unit Service
7 Application

Application SACP Message Queue6 Presentation
5 Session
4 Transport Transport SATP Segment Queue
3 Network Network SARP Packet Router
2 Data-Link Data-Link CAN Frame Bridge
1 Physical Physical RS-232 Bit

11

http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Serial_port
http://en.wikipedia.org/wiki/Fieldbus
http://en.wikipedia.org/wiki/CAN_bus
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/CAN_bus
http://en.wikipedia.org/wiki/RS-232

SmartAnthill Documentation, Release 0.0.0

4.1.2 Protocols

Control Protocol (SACP)

Control Protocol (SACP) is a message based protocol with priority control. It resides at the Application Layer of the
Network Model. The priority logic underlies the Channel. Each Channel has own Data Classifier.

12 Chapter 4. Specification

SmartAnthill Documentation, Release 0.0.0

Message structure

Part Field name Length (bits) Description

Header

Channel 2 Channel ID (Priority)
Data Classifier 6 Data Classifier ID
SARP 16 SARP Header part
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 Length of Data in bytes

Payload Data 0-14336 Maximum is 1792 bytes

Channel (2 bits) This is a Channel ID that specifies the priority of this Message. The smaller ID is, greater
priority has the Message. For the whole channels list please check the Channel Data Classifier.

Data Classifier (6 bits) Check the Channel Data Classifier.

SARP (16 bits) This is an address information that contains Source and Destination IDs for Routing Protocol
(SARP).

ACK (1 bit) This is an Acknowledgment flag. If ACK=1 then this Message should be confirmed by recipient
about reception.

TTL (4 bit) Time to live (TTL) is a lifetime in seconds of Message in Network. The maximum value is 15
seconds. When TTL is up the MessageLostException will be raised.

Data length (11 bits) This is a length of Payload part in bytes. The Message can be empty (without
Payload). In this situation when Data length=0x0 Payload part is not presented in the Message.

Data (0-14336 bits) The maximum size of Payload part is 1792 bytes.

Note: This limitation was caused by maximum numbers of Segments from Transport Protocol (SATP). 256
segments * 7 bytes of user data = 1792 bytes

Transport Protocol (SATP)

Transport Protocol (SATP) resides between Control Protocol (SACP) and Routing Protocol (SARP) and operates with
the two data units (Message and Segment). Therefore, he has bi-directional work.

Between Application Layer and Transport Layer of the Network Model, it divides into Segments the outbound Mes-
sage. While between Transport Layer and Network Layer it assembles multiple inbound Segments into single Message.

Transport Protocol (SATP) is a reliable protocol. It can guarantee delivery of each Segment if source device asked for
it. Also it can guarantee the integrity of final Message because Transport Protocol (SATP) knows about the order of
each Segment.

4.1. Network 13

SmartAnthill Documentation, Release 0.0.0

Segment structure

Part Field name Length (bits) Description

Header

SACP 8 SACP Header part
SARP 16 SARP Header part
SEG 1 Segmentation flag
FIN 1 Final segment flag
ACK 1 Acknowledgment flag
Reserved 1 Must be set to 0x0
Data length 4 Length of Data in bytes

Payload Data 0-64 Maximum is 8 bytes
CRC 16 Checksum

SACP (8 bits) These are the Channel and Data Classifier for Control Protocol (SACP).

SARP (16 bits) This is an address information that contains Source and Destination IDs for Routing Protocol
(SARP).

SEG (1 bit) This is a Segmentation flag. If the Message is not segmented then SEG=0 otherwise SEG=1.

Note: The service information about Segments Order is located in the first byte of Data field. Therefore it is followed
that the maximum number of Segments is 256. The first Segment marks as 0x0, the second as 0x1 and the last as
0xFF

FIN (1 bit) It indicates that this Segment is final.

ACK (1 bit) This is an Acknowledgment flag. If ACK=1 then this Segment should be confirmed by recipient
about reception.

Data length (4 bits) This is a length of Payload part in bytes. The Segment can be empty (without Pay-
load). In this situation when Data length=0x0, SEG=0 and FIN=1 Payload part is not presented in the Segment.
The maximum size of Payload part is 8 bytes.

Data (0-64 bits) This is a Payload data. If SEG=1 the first byte of the data will be used for Segments Order
information and another 7 are available for user.

CRC (16 bits) The 16-bit checksum is used for error-checking of the Header and Payload parts.

Routing Protocol (SARP)

The main goal of the Routing Protocol (SARP) is to find a route and transfer a packet to destination device that located
in the Network. The Routing Protocol (SARP) does not guarantee delivery. The only thing that it guarantees is integrity
of the Header and the Payload data in the packet (based on CRC).

14 Chapter 4. Specification

SmartAnthill Documentation, Release 0.0.0

Packet structure

Part Field name Length (bits) Description
SOP 8 Start of packet

Header

SACP 8 SACP Header part
Source 8 The source device ID
Destination 8 The destination device ID
SATP 3 SATP Header part
Reserved 1 Must be set to 0x0
Data length 4 The length of data in bytes

Payload Data 0-64 Max 8 bytes
CRC 16 Checksum
EOF 8 End of packet

SOP (8 bits) It specifies the start of the packet. These 8 bits are equal to ASCII Start Of Heading (SOH)
character 0x1.

SACP (8 bits) These are the Channel and Data Classifier for Control Protocol (SACP).

Source (8 bits) This is an Identifier (ID) of the source device. Network supports up to 255 devices. Each
device has unique identifier from range 0-255. The device with ID=0x0 corresponds to Zero Virtual Device.

Destination (8 bits) This is an Identifier (ID) of destination device. Network supports up to 255 devices.
Each device has unique identifier from range 0-255. The device with ID=0x0 corresponds to Zero Virtual Device.

SATP (3 bits) These are the Segmentation, Final and Acknowledgment flags for Transport Protocol (SATP).

Data length (4 bits) This is a length of Payload data in bytes. The Packet can be empty (without Payload).
In this situation Data length=0x0 and Payload part is not present in the Packet. The maximum size of Payload
part are 8 bytes.

Data (0-64 bits) This is a Payload part for Transport Protocol (SATP).

CRC (16 bits) The 16-bit checksum is used for error-checking of the Header and Payload parts.

EOF (8 bits) It specifies the end of the packet. These 8 bits are equal to ASCII End of Transmission (SOH)
character 0x17.

4.1. Network 15

http://en.wikipedia.org/wiki/C0_and_C1_control_codes
http://en.wikipedia.org/wiki/C0_and_C1_control_codes

SmartAnthill Documentation, Release 0.0.0

4.1.3 Channel Data Classifier

Channel (2 bits) Data Classifier (6 bits)
ID Name ID Name

0x0 Urgent
0x00 Ping
0x0A SegmentAcknowledgment

0x1 Event-Driven

0x2 Bi-Directional Communication (Request)

0x09 ListOperationalStates
0x0A ConfigurePinMode
0x0B ReadDigitalPin
0x0C WriteDigitalPin
0x0D ConfigureAnalogReference
0x0E ReadAnalogPin

0x3 Bi-Directional Communication (Response)

0x09 ListOperationalStates
0x0A ConfigurePinMode
0x0B ReadDigitalPin
0x0C WriteDigitalPin
0x0D ConfigureAnalogReference
0x0E ReadAnalogPin

Urgent

The channel with the highest priority. It uses for the critical tasks or operations.

Ping

Uses to test the reachability of Network Device. If device is reachable you will receive SegmentAcknowledgment
Segment.

The Message by Control Protocol (SACP) should have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x00
Data Classifier 6 0x00
SARP 16 Routing Protocol (SARP) address information
ACK 1 Should be 0x01
TTL 4 Time to live
Data length 11 0x0

Payload Data 0 Without Payload part

SegmentAcknowledgment

Uses for acknowledge that Segment from sender was received and verified.

The Segment by Transport Protocol (SATP) should have the next structure:

16 Chapter 4. Specification

SmartAnthill Documentation, Release 0.0.0

Part Field name Length (bits) Value

Header

Channel 2 0x00
Data Classifier 6 0x0A
SARP 16 Routing Protocol (SARP) address information
SEG 1 0x0
FIN 1 0x1
ACK 1 0x0
Reserved 1 Must be set to 0x0
Data length 4 0x2

Payload Data 16 The CRC field from received Packet

Event-Driven

Bi-Directional Communication (Request)

ListOperationalStates

Retrieve a list with activated Operational States for specified device. For the result please read ListOperationalStates
from Bi-Directional Communication (Response) channel.

The Message by Control Protocol (SACP) should have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x02
Data Classifier 6 0x09
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x0

Payload Data 0 Without Payload part

ConfigurePinMode

Configure the specified pin to behave either as an:

• INPUT

• OUTPUT

• INPUT_PULLUP

• INPUT_PULLDOWN

For the result please read ConfigurePinMode from Bi-Directional Communication (Response) channel.

The Message by Control Protocol (SACP) should have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x02
Data Classifier 6 0x0A
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x2

Payload Data 8 The number of the pin
8 The mode of the pin (see table above)

4.1. Network 17

SmartAnthill Documentation, Release 0.0.0

Note: You can configure more than one Pin using single Message. Please use the next sequence of bytes in Payload
part of Message -> pin1, mode1, pin2, mode2, ..., pinN, modeN

ReadDigitalPin

Read the value from a specified digital pin. For the result please read ReadDigitalPin from Bi-Directional Communi-
cation (Response) channel.

The Message by Control Protocol (SACP) should have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x02
Data Classifier 6 0x0B
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x1

Payload Data 8 The number of the pin

Note: You can read more than one Pin using single Message. Please use the next sequence of bytes in Payload part
of Message -> pin1, pin2, ..., pinN

WriteDigitalPin

Write a LOW or a HIGH level to a digital pin. For the result please read WriteDigitalPin from Bi-Directional Commu-
nication (Response) channel.

The Message by Control Protocol (SACP) should have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x02
Data Classifier 6 0x0C
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x2

Payload Data 8 The number of the pin
8 The level (0x1=HIGH or 0x0=LOW)

Note: You can write to more than one Pin using single Message. Please use the next sequence of bytes in Payload
part of Message -> pin1, value1, pin2, value2, ..., pinN, valueN

ConfigureAnalogReference

Configure the reference voltage used for analog input. The modes are:

• DEFAULT

• INTERNAL

• INTERNAL1V1

• INTERNAL2V56

• INTERNAL1V5

18 Chapter 4. Specification

SmartAnthill Documentation, Release 0.0.0

• INTERNAL2V5

• EXTERNAL

For the result please read ConfigureAnalogReference from Bi-Directional Communication (Response) channel.

The Message by Control Protocol (SACP) should have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x02
Data Classifier 6 0x0D
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x1

Payload Data 8 The mode (see table above)

ReadAnalogPin

Read the value from a specified analog pin. For the result please read ReadAnalogPin from Bi-Directional Communi-
cation (Response) channel.

The Message by Control Protocol (SACP) should have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x02
Data Classifier 6 0x0E
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x1

Payload Data 8 The number of the pin

Note: You can read more than one Pin using single Message. Please use the next sequence of bytes in Payload part
of Message -> pin1, pin2, ..., pinN

Bi-Directional Communication (Response)

ListOperationalStates

The result of the request from Bi-Directional Communication (Request) channel and ListOperationalStates. The Pay-
load part will contain the list of activated Operational States. Where each byte will be equal to Channel Data Classifier
ID.

The Message by Control Protocol (SACP) will have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x03
Data Classifier 6 0x09
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x1

Payload Data 8 The Channel Data Classifier ID

Note: If device has more than one activated Operational State then the Payload part of Message will have the next

4.1. Network 19

SmartAnthill Documentation, Release 0.0.0

sequence of bytes -> cdcID1, cdcID2, ..., cdcIDN

ConfigurePinMode

The result of the request from Bi-Directional Communication (Request) channel and ConfigurePinMode. The Payload
part will contain the list of pins that was successfully configured with specified mode.

The Message by Control Protocol (SACP) will have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x03
Data Classifier 6 0x0A
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x1

Payload Data 8 The number of the pin

Note: If you specified more than one Pin using single Message then the Payload part of Message will have the next
sequence of bytes -> pin1, pin2, ..., pinN

ReadDigitalPin

The result of the request from Bi-Directional Communication (Request) channel and ReadDigitalPin. The Payload
part will contain the result from requested pins. The result value can be as 0x1 (high level) or 0x0 (low level).

The Message by Control Protocol (SACP) will have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x03
Data Classifier 6 0x0B
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x1

Payload Data 8 The value (0x1 or 0x0)

Note: If you specified more than one Pin using single Message then the Payload part of Message will have the next
sequence of bytes -> value1, value2, ..., valueN

WriteDigitalPin

The result of the request from Bi-Directional Communication (Request) channel and WriteDigitalPin. The Payload
part will contain the list of pins that was successfully updated with specified levels.

The Message by Control Protocol (SACP) will have the next structure:

20 Chapter 4. Specification

SmartAnthill Documentation, Release 0.0.0

Part Field name Length (bits) Value

Header

Channel 2 0x03
Data Classifier 6 0x0C
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x1

Payload Data 8 The number of the pin

Note: If you specified more than one Pin using single Message then the Payload part of Message will have the next
sequence of bytes -> pin1, pin2, ..., pinN

ConfigureAnalogReference

The result of the request from Bi-Directional Communication (Request) channel and ConfigureAnalogReference. The
first byte of Payload part will contain 0x01 if the reference voltage was successfully configured, otherwise 0x00.

The Message by Control Protocol (SACP) will have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x03
Data Classifier 6 0x0A
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x1

Payload Data 8 The result: 0x00 or 0x01

ReadAnalogPin

The result of the request from Bi-Directional Communication (Request) channel and ReadAnalogPin. The Payload
part will contain the result from requested pins. The result value can be between 0-1023 (for 10-bit ADC) or between
0-4095 (for 12-bit ADC).

The Message by Control Protocol (SACP) will have the next structure:

Part Field name Length (bits) Value

Header

Channel 2 0x03
Data Classifier 6 0x0E
SARP 16 Routing Protocol (SARP) address information
ACK 1 Acknowledgment flag
TTL 4 Time to live
Data length 11 0x2

Payload Data 8 The MSB of result
8 The LSB of result

Note: If you specified more than one Pin using single Message then the Payload part of Message will have the next
sequence of bytes -> MSB_value1, LSB_value1, MSB_value2, LSB_value2, ..., MSB_valueN,
LSB_valueN

4.1.4 Integration with CAN

CAN bus is a message-based protocol, designed specifically for automotive applications but now also used in other

4.1. Network 21

http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Most_significant_bit
http://en.wikipedia.org/wiki/Least_significant_bit
http://en.wikipedia.org/wiki/CAN_bus

SmartAnthill Documentation, Release 0.0.0

areas such as aerospace, maritime, industrial automation and medical equipment (got from wiki).

Protocol

Network can be easy integrated with CAN because the protocols of these networks are frame-based. CAN resides
on the Data-Link Layer of the Network Model and represented with data unit as Frame. While the Network Layer
operates through Routing Protocol (SARP) and Packet. Therefore, SARP will work over CAN Protocol 2.0B
(specification with extended message formats).

The Data Length field of the Packet from SARP is equivalent with CAN Frame. The SARP Header part can be converted
to CAN Extended Identifier (29 bit).

Frame structure

Part Field name Length (bits) Description

Header

SACP

29

8 SACP Data Classifier
SARP 16 SARP address information
SATP 3 SATP flags
Reserved 2 Must be set to 0x0

Length Data length 4 The length of data in bytes
Payload Data 0-64 Max 8 bytes

Note: The fields Start of Frame, Cyclic redundancy check and End of Frame are not presented in this structure
because the CAN protocol has own implementation for its.

SACP (8 bits) The Channel and Data Classifier for Control Protocol (SACP).

SARP (16 bits) The address information that contains Source and Destination IDs for Routing Protocol
(SARP).

SATP (3 bits) The Segmentation, Final and Acknowledgment flags for Transport Protocol (SATP)

Data length (4 bits) The length of Payload part in bytes. The Frame can be empty (without Payload). In
this situation Data length=0x0 and Payload is not presented in the Frame. The maximum size of Payload part is
8 bytes.

Data (0-64 bits) The Payload data for Transport Protocol (SATP).

4.1.5 Zero Virtual Device

This is a virtual device in Network with ID=0x0.

4.2 System

4.2.1 Applications

• Connectivity

22 Chapter 4. Specification

http://en.wikipedia.org/wiki/CAN_bus
http://en.wikipedia.org/wiki/CAN_bus

SmartAnthill Documentation, Release 0.0.0

• Sensor aggregation

• Security and access control

• Home and building automation

• Industrial automation

• Human machine interface

• Lighting control

• Energy

• Data acquisition

• System management

4.3 Embedded System

Embedded System allows main System to communicate with hardware part (Peripherals) of micro-based device
through Router service that resides on Network Layer of Network Model.

4.3.1 Peripherals

Embedded System supports integration with these Peripherals:

• Serial Communication Interfaces (SCI): RS-232.

• Synchronous Serial Communication Interface: I2C, SPI, 1-Wire

• Networks: Ethernet

• Fieldbuses: CAN.

• Timers

• General Purpose Input/Output (GPIO)

• Analog to Digital/Digital to Analog Convertors (ADC / DAC)

4.3.2 Router

The Router service resides on Network Layer of Network Model. It operates with Packet structures and performs the
next tasks:

• Parsing of incoming Packet from “bytes flow”

• Acknowledging of incoming Packet if it has PACKET_FLAG_ACK

• Sending an outgoing Packet

• Operating with Stack of outgoing Packets

4.3. Embedded System 23

http://en.wikipedia.org/wiki/Peripheral
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/I2C
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/1-Wire
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Fieldbus
http://en.wikipedia.org/wiki/CAN_bus
http://en.wikipedia.org/wiki/General_Purpose_Input/Output
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Digital-to-analog_converter

SmartAnthill Documentation, Release 0.0.0

Activity Diagram

4.3.3 Operational State Machine

The Operational State Machine is a Finite State Machine with predefined operational states. It can be in only one
operational state at a time. The transition from one operational state to another can be initiated by a Triggering Event
(device interrupt) or Condition (based on Channel Data Classifier).

24 Chapter 4. Specification

http://en.wikipedia.org/wiki/Finite-state_machine

SmartAnthill Documentation, Release 0.0.0

State Diagram

Operational States

• SegmentAcknowledgment

• ConfigurePinMode

• ReadDigitalPin

• WriteDigitalPin

4.3. Embedded System 25

	Getting Started
	Installation
	Launching
	Configuration

	Usage Documentation
	Developer Documentation
	Specification
	Network
	System
	Embedded System

